Handheld X-ray fluorescence spectrometer for the analysis of outdoor bronze monuments

Charalambos Zarkadas1, Andreas-Germanos Karydas1, Dimitrios Charalambous2, Vasilike Argyropoulos2, Thanasis Karabotsos2, Aggeliki Vossou Domi2, Maria Giannoulaki2, Kiki Polikreti2, Eleni Drakaki2 and Ioannis Sianoudis2

1. Laboratory for Material Analysis, Institute of Nuclear Physics, N.C.S.R Demokritos, 153 10 Aghia Paraskevi, Athens, Greece

2. Departments of Conservation of Antiquities & Works of Art and Physics, Chemistry and Material Science2, Technological Educational Institution of Athens, Ag. Spyridonas, Aigaleo 12210, Greece

\textbf{Abstract}

A handheld XRF spectrometer was designed under the framework of the Educational and Initial Vocational Training Program – Archimedes for the study of characteristic corrosion products found on outdoor bronze monuments. The spectrometer consists of a low power (3W), cool cathode, transmission anode (Ag) X-ray tube, and a Si-PIN detector. The appropriate selection of materials, their careful integration and the optimal choice of apertures in the optical paths enabled finally a well-collimated exciting beam of high spectral purity, as seen in Fig. 1. The optimal conditions with respect to the operational voltage and filtering materials were deduced after measuring a variety of reference materials including mostly metal alloys, and corroded metallic coupons. A characteristic spectrum obtained from the standard BCR-D bronze sample is shown in Fig. 2. Typical detection limits, for the elements of interest, such as Sn were found to be at the order of 1% for a measuring time of 200 – 300 sec. A first attempt towards a quantification scheme resulted to a relatively good accuracy in the case of homogeneous, well certified metal alloys.

\textbf{Fig 1.} Profile of the exciting X-ray beam, obtained at 30 kV after scattering of the primary tube radiation onto a high purity amorphous SiO\textsubscript{2}.
Fig 2. Spectrum of a standard bronze sample (BCR-D, Cu: 80.3%, Pb: 9.2%, Sn: 10.1%, As: 0.29%) obtained at 30 kV with direct filtered tube excitation. With the symbol DP, diffraction peaks are indicated.